Arduino announce the powerful new Arduino Portenta family



  • Designed for demanding industrial applications, AI edge processing and robotics, it features a new standard for open high-density interconnect to support advanced peripherals. The first member of the family is the Arduino Portenta H7 module – a dual-core Arm Cortex-M7 and Cortex-M4 operating at 480MHz and 240MHz, respectively, with industrial temperature range (-40 to 85°C) components. The Portenta H7 is capable of running Arduino code, Python and JavaScript, making it accessible to an even broader audience of developers.

    86c60b54-8c56-4151-a8e9-7e1d3c218d7a-image.png
    source : Arduino.cc

    The new Arduino Portenta H7 is now available for pre-order on the Arduino online store, with an estimated delivery date of late February 2020.

    Overview:

    Portenta H7 simultaneously runs high level code along with real time tasks. The design includes two processors that can run tasks in parallel. For example, is possible to execute Arduino compiled code along with MicroPython one, and have both cores to communicate with one another. The Portenta functionality is two-fold, it can either be running like any other embedded microcontroller board, or as the main processor of an embedded computer. Use the Portenta Carrier board to transform your H7 into an eNUC computer and expose all of the H7 physical interfaces.

    Portenta can easily run processes created with TensorFlow Lite, you could have one of the cores computing a computer vision algorithm on the fly, while the other could be making low level operationis like controlling a motor, or acting as a user interface. Use Portenta when performance is key, among other cases, we envision it to be part of:

    • High-end industrial machinery
    • Laboratory equipment
    • Computer vision
    • PLCs
    • Industry-ready user interfaces
    • Robotics controller
    • Mission-critical devices
    • Dedicated stationary computer
    • High-speed booting computation (ms)

    Two Parallel Cores

    H7's main processor is a dual-core unit made of a Cortex M7 running at 480 MHz and a Cortex M4 running at 240 MHz. The two cores communicate via a Remote Procedure Call mechanism that allows calling functions on the other processor seamlessly. Both processors share all the on-chip peripherals and can run:

    • Arduino sketches on top of the Arm Mbed OS
    • Native Mbed applications
    • MicroPython / JavaScript via an interpreter
    • TensorFlow Lite

    Graphics Accelerator
    Probably one of the most exciting features of the Portenta H7 is the possibility of connecting an external monitor to build your own dedicated embedded computer with a user interface. This is possible thanks to the processor's on-chip GPU, the Chrom-ART Accelerator. Besides the GPU, the chip includes a dedicated JPEG encoder and decoder.

    A new standard for pinouts
    The Portenta family adds two 80 pin high density connectors at the bottom of the board. This ensures scalability for a wide range of applications by simply upgrading your Portenta board to the one suiting your needs

    On-board Connectivity
    The onboard wireless module allows to simultaneously manage WiFi and Bluetooth connectivity. The WiFi interface can be operated as an Access Point, as a Station or as a dual mode simultaneous AP/STA and can handle up to 65 Mbps transfer rate. Bluetooth interface supports Bluetooth Classic and BLE. It is also possible to expose a series of different wired interfaces like UART, SPI, Ethernet, or I2C, both through some of the MKR styled connectors, or through the new Arduino industrial 80 pin connector pair.

    USB-C Multipurpose Connector
    The board's programming connector is a USB-C port that can also be used to power the board, as a USB Hub, to connect a DisplayPort monitor, or to deliver power to OTG connected devices.

    Multiple options in one board
    Order the default Arduino Portenta H7 (codename H7-15EUNWAD) that comes with:

    • 2MB SDRAM
    • 16MB NOR Flash
    • 10/100 Ethernet Phy
    • USB HS
    • NXP SE050C2 Crypto
    • WiFi/BT Module
    • Ceramic Antenna
    • DisplayPort over USB-C

    If you need more memory, Portenta H7 can host up to 64 MByte of SDRAM, and 128 MByte of QSPI Flash. Order it with an external UFL connector for adding a higher-gain antenna to the board. Decide between crypo-chips from Microchip and NXP. The board is highly customizable in volumes.
    Source and Credits: Arduino.cc



  • Arduino also providing Portenta Carrier board that will add extra capabilities to your H7 board

    1578338065-portentacarrier-1.jpg

    The Portenta Carrier exposes all of the extra capabilities of the processor on your microcontroller board through connectors and peripherals that do not physically fit on it. There are connectors for USB, RJ-45, CAN bus, audio in and out lines, camera, DisplayPort, etc.

    This design expands the default communication ports of Portenta boards to other wired and wireless protocols. Gigabit Ethernet will let you transform your board into a dedicated access point, a network drive, or even a serial-to-ethernet bridge. Adding a SIM card to the board makes it possible to connect to NBIoT or GPRS networks. Thanks to its LoRa connectivity you can design your own gateway to host your wireless sensor network.

    Adding an 8-bit camera sensor to the Portenta Carrier camera connector will help you implement any kind of computer vision application. And if the onboard computing power is not enough, you could enhance your board’s AI capabilities by adding state-of-the-art Machine Learning modules through the Carrier’s miniPCI connector (like Google’s Coral unit of computation).


Log in to reply
 

Recent Posts

  • B

    Python Method vs function

    Method is called by its name, but it is associated to an object (dependent).
    A method is implicitly passed the object on which it is invoked.
    It may or may not return any data.
    A method can operate on the data (instance variables) that is contained by the corresponding class
    Function is block of code that is also called by its name. (independent)
    The function can have different parameters or may not have any at all. If any data (parameters) are passed, they are passed explicitly.
    It may or may not return any data.
    Function does not deal with Class and its instance concept.

    read more
  • @Suhailjr But I think since it's not a plug and plug play system and it will laying on the PCB for the long term, it might be fine. for me, it's similar to the Intel Edison and the PICO-IMX7 System-on-Module

    dade502a-71f6-4da0-bd7d-0e9a0b602cb0-image.png

    a4b8898f-90d4-4a34-ba5d-81ab76fda904-image.png

    read more
  • @salmanfaris at last they update their design. T
    What you think on the updated connector. I felt like its more fragile and high chance for corottion issue due to humidity for long term use.

    read more
  • Built on the same 64-bit quad-core BCM2711 application processor as Raspberry Pi 4, Compute Module 4 delivers a step-change in performance over its predecessors: faster CPU cores, better multimedia, more interfacing capabilities, and, for the first time, a choice of RAM densities and a wireless connectivity option.

    3094f292-3301-4364-a444-d828f6e77ff8-image.png

    You can find detailed specs here,

    1.5GHz quad-core 64-bit ARM Cortex-A72 CPU VideoCore VI graphics, supporting OpenGL ES 3.x 4Kp60 hardware decode of H.265 (HEVC) video 1080p60 hardware decode, and 1080p30 hardware encode of H.264 (AVC) video Dual HDMI interfaces, at resolutions up to 4K Single-lane PCI Express 2.0 interface Dual MIPI DSI display, and dual MIPI CSI-2 camera interfaces 1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM Optional 8GB, 16GB or 32GB eMMC Flash storage Optional 2.4GHz and 5GHz IEEE 802.11b/g/n/ac wireless LAN and Bluetooth 5.0 Gigabit Ethernet PHY with IEEE 1588 support 28 GPIO pins, with up to 6 × UART, 6 × I2C and 5 × SPI

    31354fad-6332-40e8-b324-53e0aa5dbace-image.png

    Compute Module 4 IO Board
    89a3b68b-bb74-4002-9c2b-d32c2e1450b3-image.png

    The IO board provides:

    Two full-size HDMI ports Gigabit Ethernet jack Two USB 2.0 ports MicroSD card socket (only for use with Lite, no-eMMC Compute Module 4 variants) PCI Express Gen 2 x1 socket HAT footprint with 40-pin GPIO connector and PoE header 12V input via barrel jack (supports up to 26V if PCIe unused) Camera and display FPC connectors Real-time clock with battery backup

    More details:
    https://www.raspberrypi.org/products/compute-module-4/?variant=raspberry-pi-cm4001000, https://www.raspberrypi.org/blog/raspberry-pi-compute-module-4/

    read more
  • 28e1870e-33fe-4791-bc74-05c9d58098da-image.png

    Seeed is currently counting down for the 10 year anniversary of the debut of Grove 🎉. In the past 10 years, we have seen many wonderful projects created by Grove from our user and community. We want to invite you to join us to celebrate the 10 year anniversary of Grove 🤩.

    In the Grove 10 Years Celebration, we’d like to collect the stories of “Grove with You”, which we want to invite our users to share their stories they have with Grove products.

    => What project you’ve made out of Grove?
    => What is your favourite Grove?
    => which one was the first Grove you’ve purchased?

    Seeed encourages you to post and share photos, videos, stories of Grove in the Seeeed Forum, or any other platforms below that you’d like to use.

    The following ways to find us, and tag #grove10 to share the project with us!

    Twitter (@seeedstudio) Instagram (@seeedstudio) or simply email your project to grove10@seeed.cc

    Feel free to be creative in documenting your projects–we will be selecting top 10 most “Grovy” winning entries from the submissions, and the winners will receive a $100 Grove Surprise Pack 😋 as a special gift.

    Looking forward to seeing your projects! 🥳

    read more